MODEL PAPERS

B.TECH II YEAR – II SEM (R18) (2019-20)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – 'A' Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

(Autonomous Institution – UGC, Govt. of India) DESIGN AND ANALYSIS OF ALGORITHMS

II B. Tech II Semester Model Paper-I

Time: 3 hours

Note:

Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

<u>SECTION – I</u>

1. Define time and space complexity. Explain with examples. [14M]

(OR)

2. For $T(n)=7T(n/2)+18n^2$ Solve the recurrence relation and find the time complexity. [14M]

<u>SECTION – II</u>

3. Explain AND/OR graphs [14M]

(**OR**)

4. How 8-Queen's problem can be solved using back tracking and explain with an example. [14M]

<u>SECTION – III</u>

5. Explain General method of Greedy method. Find the greedy solution for following job sequencing with deadlines problem n = 7, (p1,p2,p3,p4,p5,p6,p7) = (3,5,20,18,1,6,30), (d1,d2,d3,d4,...,d7) = (1,3,4,3,2,1,2) [14M]

(OR)

6. a) A motorist wishing to ride from city A to B. Formulate greedy based algorithms to generate shortest path and explain with an example graph. [7M]
b) What is the solution generated by function Job Sequencing algorithm when n=6 (P1...p6) = (3, 5, 20, 18, 1, 6), and (d1..d6) = (1, 3, 4, 3, 2, 1). [7M]

<u>SECTION – IV</u>

7.Solve a travelling sales person problem using dynamic programming [14M]

(OR)

8 Write a function to compute lengths of shortest paths between all pairs of nodes for the given adjacency matrix.[14M]

 $\left(\begin{array}{ccc}
0 & 6 & 13 \\
8 & 0 & 4 \\
5 & \infty & 0
\end{array}\right)$

Max. Marks: 70

R18

SECTION – V

9. Discuss Draw the portion of state space tree generated by FIFOBB for the following instance of 0/1 knapsack n= 5, M=12, (p1,p5) = (10,15,6,8,4) (w1,w5)=(4,6,3,4,2)[14M]

(OR)

10. (a) Write and explain the Cooks theorem.	[7M]
(b) What is non deterministic algorithm explain.	[7M]

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Model Paper-II

Design and analysis of Algorithms

(CSE & IT)										
Roll No										

Time: 3 hours

Max. Marks: 70

Note: Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

<u>SECTION – I</u>

1. Illustrate Merge sort algorithm and discuss its time complexity.[14M]

(OR)

2. Explain Strassen's matrix multiplication and its time complexity [14M]

<u>SECTION – II</u>

3. Discuss union and find algorithms in detail with an example. [14M]

(OR)

4. a) Explain Prim's algorithm for minimal spanning tree with an example.[7M]b) Write in detail about Hamiltonian cycles. Give example to it.[7M]

<u>SECTION – III</u>

5. Write a greedy algorithm for sequencing unit time jobs with dead lines and profits. [14M]

(OR)

6. Derive time complexity of job sequencing with deadlines .Obtain the optimal solution when n=5, (p1, p2,...)=(20,15,10,5,1) and (d1,d2,...)=(2,2,1,3,3).[14M]

SECTION – IV

7. Explain the chained matrix multiplication with suitable example.[14M]

(OR)

8. Describe Travelling Salesperson Problem (TSP) using Dynamic Programming.[14M]

<u>SECTION – V</u>

9. Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class.[14M]

(OR)

10. Describe Travelling Salesperson Problem (TSP) using Branch and Bound.[14M]

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Model Paper-III

Design and analysis of Algorithms

(CSE & IT)										
Roll No										

Time: 3 hours

Max. Marks: 70

Note: Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

<u>SECTION – I</u>

1. Simulate Quick sort algorithm for the following example 25,36,12,4,5,16,58,54,24,16,9,65,78 [14M]

(OR)

2. a)Write an algorithm for linear search and analyze the algorithm for its time complexity. [7M]b)What is pseudo-code? Explain with an example.[7M]

<u>SECTION – II</u>

3. Explain about bi-connected components in detail.[14M]

(OR)

4. Give the solution to the m-coloring of a graph using backtracking.[14M]

<u>SECTION – III</u>

5. Define Greedy knapsack. Find the optimal solution of the Knapsack instance n=7, M=15, (p1, p2, ..., p7) = (10,5,15,7,6,18,3) and (w1,w2,...,w7)=(2,3,5,7,1,4,1). [14M]

(**OR**)

- 6. Write about 0/1 knapsack problem with an example.[14M] <u>SECTION – IV</u>
- 7. Let n=4 and (a1,a2,a3,a4) Construct optimal binary search for (a1, a2, a3, a4) = (do, if, int, while), p(1:4) = (3,3,1,1) q(0:4) = (2,3,1,1,1) [14M]

(OR)

8. Explain how solution will be provided for all pairs shortest path problem using dynamic programming.[14M]

$\underline{SECTION - V}$

9. a) Explain non-deterministic algorithm with an example.[7M]b) Explain Satisfiability problem.[7M]

(OR)

10. Draw the portion of state space tree generated by LCBB for the following instance of 0/1 knapsack n= 5, M=12, (p1,, p5) = (10,15,6,8,4) (w1,....,w5)=(4,6,3,4,2). [14M]

Code No: XXXXXX

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Model Paper-IV

Design and analysis of Algorithms (CCE P. IT)

$(CSE \alpha II)$											
Roll No											

Time: 3 hours

Note: Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

<u>SECTION – I</u>

1. a) Explain the process of designing an algorithm. Give characteristics of an algorithm. [7M] b) Explain asymptotic notations. [7M]

(OR)

2. a) Give the general procedure of divide and conquer method.[7M] b)Write about quick sort method with example.[7M]

SECTION – II

- 3.a) Explain about Disjoint set operations.[7M]
 - b) Write short notes on spanning trees. [7M].

(**OR**)

4. What is an articulation point? How to find articulation point for a given graph. [14M]

<u>SECTION – III</u>

5. Define Greedy knapsack. Find the optimal solution of the Knapsack instance n = 7, M = 20, (p1, p2, p2) $\dots p7$ = (8,5,6,7,6,12,3) and (w1,w2, $\dots w7$)=(2,10,8,7,6,4,11). [14M]

(OR)

6. Give the optimal solution for 0/1 knapsack problem using greedy method. (p1, p2, p3, p4) = (11, 21, 31, 33), (w1, w2, w3, w4) = (2, 11, 22, 15), M=40, n=4. [14M]

SECTION – IV

7. Let n=4 and $(a_{1},a_{2},a_{3},a_{4})$ Construct optimal binary search for $(a_{1},a_{2},a_{3},a_{4}) = (cout, float, if, a_{2},a_{3},a_{4}) = (cout, float, if, a_{2},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{4},a_{$ while), p(1:4) = (1/20, 1/5, 1/10, 1/20) q(0:4) = (1/5, 1/10, 1/5, 1/20, 1/20) [14M]

(OR)

8. Explain optimal binary search tree with an example.14M]

Max. Marks: 70

R18

SECTION – V

9. What is state space tree? What are the different ways of searching an answer node in an state space tree explain with example. [14M]

(OR)

10. a) Write non-deterministic algorithm for knapsack problem?[7M]b) Difference between NP-hard and NP-complete problems[7M]

Cada	No. D174(1508										R	17	
			FCF	OFI	ENIC	INIT	דידי	DINI	C (2-т	TC			- ~v
IVI.	ALLA KE								СС СГ.			ΠΝΟ		JI
	прт	(Autonomo)	us ins		n - U	GU	, G(DVL. (101a) ЛЛ-	201	0	
	11 B. I	ech II Semest	ter Ko	egula	r Exa	ami	nat	lons	, A	prii	/Ma	y 201	9	
		Desig	gn and	I Anal	IYSIS () 7	T Al	gor	ithm	IS					
	I	DUN		(C2)	<u>1 a i</u>	()						1		
		KOII NO												
Time	2 hours								low	Ma	nlras /	70		
Note:	This question	on paper Consists o	f 5 Sect	tions A	nswer	FIV	ΕOι	n Jestio	ns ('hoo	sing (ONE O	uestio	n from
each S	SECTION and	each Question car	ries 14	marks.		111	L Q	aestio	115, C	1100	Sing		uestio	ii ii 0iii
				:	***									
			<u>S</u>	SECTI	ON-I									
1	Explain abc	out Psuedo code f	or expr	ressing	algori	thm	S							[7M]
	Define an a	lgorithm and writ	te the c	haract	eristics	s of a	algo	rithm	l .					[7M]
				OI	R									
2	Describe pe	erformance analys	sis, spa	ce con	nplexit	y an	d tir	ne co	mpl	exity	у.			[7M]
	Differentiat	e between probab	oilistic	analys	is and	amo	ortize	ed an	alysi	is.				[7M]
			S	ECTI	<u>ON-II</u>									
3	Illustrate the	e general method	of divi	ide and	l conqu	uer t	echr	nique	•					[7M]
	Write an alg	gorithm for Binar	y searc	ch and	discus	s its	com	plex	ity.					[7M]
1	o Evoloin	Imanga alt problem	in Cra) du mai	JR									[7]]
4	a. Explain	algorithm for Job		ing wi	uiou th dead	lines								[7]M]
	0. Explain	algorithm for 500 s	sequenc	SECT	'ION-I	IIICo								[/11]
5	Explain Ma	atrix chain multipli	cation i	n dyna	mic pro	<u>n</u> ograr	nmir	ıg.						[14M]
	-	-			- חר	-		-						
6	Explain 0/1	knapsack problen	n dynan	nic prov	JK orammi	nσ								[14M]
v	Explain 0/1	r knupsuek problen	il dynan	ne prog	51411111	<u>.</u> .								
				SECT	ION-I	V								
7	a. Write a c	lepth first search al	lgorithn	n for gr	aph tra	versa	al.							[7M]
	b. Discuss a	about AND / OR g	raphs a	nd gan	ne trees	5								[7M]
0	D		•	(OR	C1				1				
8	a. Define g	raph coloring and v	write an	algori	thm to :	tind	Ham	altoni	an c	ycles				[7M]
	D. Compare	e and contrast betw	een cor	SEC1		onent	s and	u di C	onne	cied	comj	jonents	.	[/] VI]
9	a. Explain l	FIFO Branch and F	Sound s	olution		<u>v</u>								[7M]
,	b. Differen	tiate between NP -	Hard a	nd NPC	Comple	te cla	asses	5.						[7M]
			0 4	(OR									r - 1
10	a. Explain (0/1 knapsack probl	em in E	Branch	and Bo	und	techr	nique.						[7M]
	b. Discuss a	about general meth	od of b	ranch a	ind bou	nd te	echni	ique.						[7M]

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018

Design and analysis of Algorithms

$(CSE \propto 11)$										
Roll No										

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

$\mathbf{PART} - \mathbf{A}$	(25 Marks)
1. (a) General strategy of divide and conquer	[2M]
(b) What are the performance analysis techniques of an algorithm?	[3M]
(c) What is union and find?	[2M]
(d) Explain bi connected components.	[3M]
(e) What is job sequencing with deadlines?	[2M]
(f) What is greedy method?	[3M]
(g) What is a graph coloring problem?	[2M]
(h) What is general backtracking method?	[3M]
(i) What is the difference between NP hard and NP Complete problem?	[2M]
(j) List the advantages of dynamic programming.	[3M]
PART – B	(50 Marks)
<u>SECTION – I</u>	
2. Explain in detail about asymptotic notations.	[10M]
(OR)	
3. Explain Merge sort technique. Give the time complexity of merge sort.	[10M]
<u>SECTION – II</u>	
4. Explain the following graph traversal	
(c) Depth First search	[5M]
(d) Breath First search.	[5M]
(OR)	
5. Write short notes on	
a) Game trees	[5M]
b) AND/OR graphs	[5M]
<u>SECTION – III</u>	
6 How do you construct a minimum Spanning tree using kruskals algorithm	ovplain? List an

6.	How do you construct a minimum Spanning t	ree using kruskals algorithm explain?	List any two
	applications.	[10M]	

(OR)

7. State dynamic programming. Explain with one application. [10M]

Max. Marks: 75

SECTION – IV

8. Explain the Travelling salesmen problem using Branch and bound technique. [10M[(OR)
9.Give the solution to the 8 queen's problems using backtracking. [10M] <u>SECTION – V</u>

10. Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class. [10M]

(OR) 11. (a) Write and explain the Cooks theorem. [5M] (b) What is non deterministic algorithm explain. [5M]