MODEL PAPERS

B.TECH II YEAR - II SEM (R18)
 (2019-20)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY
 (Autonomous Institution - UGC, Govt. of India)
 Recognized under 2(f) and 12 (B) of UGC ACT 1956
 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA \& NAAC - 'A' Grade - ISO 9001:2015 Certified)
 Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad - 500100, Telangana State, India

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
DESIGN AND ANALYSIS OF ALGORITHMS
II B. Tech II Semester Model Paper-I
(CSE\& IT)

Roll No										

Time: 3 hours

Max. Marks: 70

Note:

Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION - I

1. Define time and space complexity. Explain with examples. [14M]
(OR)
2. For $T(n)=7 T(n / 2)+18 n^{2}$ Solve the recurrence relation and find the time complexity.

SECTION - II

3. Explain AND/OR graphs [14M]
(OR)
4. How 8-Queen's problem can be solved using back tracking and explain with an example. [14M]

SECTION - III

5. Explain General method of Greedy method. Find the greedy solution for following job sequencing with deadlines problem $\mathrm{n}=7,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5, \mathrm{p} 6, \mathrm{p} 7)=(3,5,20,18,1,6,30),(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \ldots, \mathrm{~d} 7)=$ (1,3,4,3,2,1,2) [14M]

(OR)

6. a) A motorist wishing to ride from city A to B. Formulate greedy based algorithms to generate shortest path and explain with an example graph. [7M]
b) What is the solution generated by function Job Sequencing algorithm when $\mathrm{n}=6(\mathrm{P} 1 \ldots \mathrm{p} 6)=(3,5,20$, $18,1,6)$, and $(\mathrm{d} 1 . \mathrm{d} 6)=(1,3,4,3,2,1) .[7 \mathrm{M}]$

SECTION - IV

7.Solve a travelling sales person problem using dynamic programming [14M]
(OR)
8 Write a function to compute lengths of shortest paths between all pairs of nodes for the given adjacency matrix.[14M]

$$
\left(\begin{array}{ccc}
0 & 6 & 13 \\
8 & 0 & 4 \\
5 & \infty & 0
\end{array}\right)
$$

SECTION - V

9. Discuss Draw the portion of state space tree generated by FIFOBB for the following instance of $0 / 1$ knapsack $n=5, M=12,(p 1, \ldots \ldots p 5)=(10,15,6,8,4)(w 1, \ldots . w 5)=(4,6,3,4,2)[14 M]$

(OR)

10. (a) Write and explain the Cooks theorem.
(b) What is non deterministic algorithm explain.

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
II B.Tech II Semester Model Paper-II
Design and analysis of Algorithms
(CSE \& IT)

Roll No										

Time: 3 hours

Max. Marks: 70
Note: Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1. Illustrate Merge sort algorithm and discuss its time complexity.[14M]
(OR)
2. Explain Strassen's matrix multiplication and its time complexity [14M]

SECTION - II

3. Discuss union and find algorithms in detail with an example. [14M]
(OR)
4. a) Explain Prim's algorithm for minimal spanning tree with an example.[7M]
b) Write in detail about Hamiltonian cycles. Give example to it.[7M]

SECTION - III

5. Write a greedy algorithm for sequencing unit time jobs with dead lines and profits. [14M]
(OR)
6. Derive time complexity of job sequencing with deadlines .Obtain the optimal solution when $\mathrm{n}=5,(\mathrm{p} 1, \mathrm{p} 2, \ldots)=(20,15,10,5,1)$ and $(\mathrm{d} 1, \mathrm{~d} 2, \ldots)=(2,2,1,3,3) .[14 \mathrm{M}]$

SECTION - IV

7. Explain the chained matrix multiplication with suitable example.[14M]
(OR)
8. Describe Travelling Salesperson Problem (TSP) using Dynamic Programming.[14M]

SECTION - V

9. Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class.[14M]
(OR)
10. Describe Travelling Salesperson Problem (TSP) using Branch and Bound.[14M]

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY
(Autonomous Institution - UGC, Govt. of India)
II B.Tech II Semester Model Paper-III
Design and analysis of Algorithms
(CSE \& IT)

Roll No										

Time: 3 hours
Max. Marks: 70
Note: Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION - I

1. Simulate Quick sort algorithm for the following example $25,36,12,4,5,16,58,54,24,16,9,65,78$ [14M] (OR)
2. a)Write an algorithm for linear search and analyze the algorithm for its time complexity.

SECTION - II

3. Explain about bi-connected components in detail.[14M]
(OR)
4. Give the solution to the m-coloring of a graph using backtracking. [14M]

SECTION - III

5. Define Greedy knapsack. Find the optimal solution of the Knapsack instance $n=7, M=15,(p 1, p 2$, $\ldots \ldots \mathrm{p})=(10,5,15,7,6,18,3)$ and $(\mathrm{w} 1, \mathrm{w} 2, \ldots . \mathrm{w} 7)=(2,3,5,7,1,4,1) .[14 \mathrm{M}]$
(OR)
6. Write about $0 / 1$ knapsack problem with an example.[14M]

SECTION - IV

7. Let $\mathrm{n}=4$ and $(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)$ Construct optimal binary search for $(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=(\mathrm{do}, \mathrm{if}, \mathrm{int}$, while), $p(1: 4)=(3,3,1,1) q(0: 4)=(2,3,1,1,1) \quad[14 M]$
(OR)
8. Explain how solution will be provided for all pairs shortest path problem using dynamic programming.[14M]

SECTION - V

9. a) Explain non-deterministic algorithm with an example.[7M]
b) Explain Satisfiability problem. [7M]

(OR)

10. Draw the portion of state space tree generated by LCBB for the following instance of $0 / 1$ knapsack $n=$ $5, \mathrm{M}=12,(\mathrm{p} 1, \ldots \ldots \mathrm{p} 5)=(10,15,6,8,4)(\mathrm{w} 1, \ldots . . \mathrm{w} 5)=(4,6,3,4,2) .[14 \mathrm{M}]$

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
II B.Tech II Semester Model Paper-IV
Design and analysis of Algorithms
(CSE \& IT)

Roll No										

Time: 3 hours

Max. Marks: 70
Note: Question paper Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION - I

1. a) Explain the process of designing an algorithm. Give characteristics of an algorithm. [7M]
b) Explain asymptotic notations. [7M]
(OR)
2. a) Give the general procedure of divide and conquer method.[7M]
b)Write about quick sort method with example.[7M]

SECTION - II

3.a) Explain about Disjoint set operations.[7M]
b) Write short notes on spanning trees. $[7 \mathrm{M}]$.
(OR)
4. What is an articulation point? How to find articulation point for a given graph. [14M]

SECTION - III

5. Define Greedy knapsack. Find the optimal solution of the Knapsack instance $n=7, M=20,(p 1, p 2$,
$\ldots . . \mathrm{p} 7)=(8,5,6,7,6,12,3)$ and $(\mathrm{w} 1, \mathrm{w} 2, \ldots . \mathrm{w} 7)=(2,10,8,7,6,4,11) .[14 \mathrm{M}]$
(OR)
6. Give the optimal solution for $0 / 1$ knapsack problem using greedy method.

$$
(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(11,21,31,33),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,11,22,15), \mathrm{M}=40, \mathrm{n}=4 .[14 \mathrm{M}]
$$

SECTION - IV

7. .Let $\mathrm{n}=4$ and ($\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4$) Construct optimal binary search for $(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=($ cout, float, if, while), $\mathrm{p}(1: 4)=(1 / 20,1 / 5,1 / 10,1 / 20) \mathrm{q}(0: 4)=(1 / 5,1 / 10,1 / 5,1 / 20,1 / 20) \quad[14 \mathrm{M}]$
8. Explain optimal binary search tree with an example. 14 M]

SECTION - V

9. What is state space tree? What are the different ways of searching an answer node in an state space tree explain with example. [14M]
(OR)
10. a) Write non-deterministic algorithm for knapsack problem?[7M]
b) Difference between NP-hard and NP-complete problems[7M]

Roll No										

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Explain about Psuedo code for expressing algorithms [7M]
Define an algorithm and write the characteristics of algorithm.
OR
2 Describe performance analysis, space complexity and time complexity.
Differentiate between probabilistic analysis and amortized analysis.

SECTION-II

3 Illustrate the general method of divide and conquer technique.
Write an algorithm for Binary search and discuss its complexity.
b. Explain algorithm for Job sequencing with deadlines

SECTION-III

5 Explain Matrix chain multiplication in dynamic programming.
OR
6 Explain 0/1 knapsack problem dynamic programming.

SECTION-IV

7 a. Write a depth first search algorithm for graph traversal.
b. Discuss about AND / OR graphs and game trees

SECTION-V

9 a. Explain FIFO Branch and Bound solution.
b. Differentiate between NP - Hard and NPComplete classes.

OR
10 a. Explain 0/1 knapsack problem in Branch and Bound technique.
b. Discuss about general method of branch and bound technique.

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)
II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018 Design and analysis of Algorithms
(CSE \& IT)

Roll No										

Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B
Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART - A

1. (a) General strategy of divide and conquer
(b) What are the performance analysis techniques of an algorithm?
(c) What is union and find?
(d) Explain bi connected components.
(e) What is job sequencing with deadlines?
(f) What is greedy method?
(g) What is a graph coloring problem?
(h) What is general backtracking method?
(25 Marks)
(i) What is the difference between NP hard and NP Complete problem?
(j) List the advantages of dynamic programming.

PART - B

SECTION - I

2. Explain in detail about asymptotic notations.
[10M]
(OR)
3. Explain Merge sort technique. Give the time complexity of merge sort.

SECTION - II

4. Explain the following graph traversal
(c) Depth First search
(d) Breath First search.
(OR)
5. Write short notes on
a) Game trees [5M]
b) AND/OR graphs

SECTION - III

6. How do you construct a minimum Spanning tree using kruskals algorithm explain? List any two applications.
7. State dynamic programming. Explain with one application.
8. Explain the Travelling salesmen problem using Branch and bound technique. [10M[(OR)
9.Give the solution to the 8 queen's problems using backtracking. [10M]

SECTION - V

10. Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class.
[10M]
(OR)
11. (a) Write and explain the Cooks theorem.
(b) What is non deterministic algorithm explain.
